便攜式紅外氮氧化物分析儀一臺氣體分析儀或一套氣體分析系統(tǒng)相當(dāng)于一套完整的化工工藝設(shè)備,因此,氣體分析儀器系統(tǒng)工作過程就是在實現(xiàn)一系列的化工過程。若想通過氣體分析得到準確數(shù)據(jù),就必須了解這一系列化工過程中各階段的情況及變化,認真研究并掌握其中的規(guī)律,只有這樣才能達到準確測定的目的。
DLAS技術(shù)本質(zhì)上是一種光譜吸收技術(shù),通過分析激光被氣體的選擇性吸收來獲得氣體的濃度。它與傳統(tǒng)紅外光譜吸收技術(shù)的不同之處在于,半導(dǎo)體激光光譜寬度遠小于氣體吸收譜線的展寬。因此,DLAS技術(shù)是一種高分辨率的光譜吸收技術(shù),半導(dǎo)體激光穿過被測氣體的光強衰減可用朗伯-比爾(Lambert-Beer)定律表述式得出,關(guān)系式表明氣體濃度越高,對光的衰減也越大。因此,可通過測量氣體對激光的衰減來測量氣體的濃度。
便攜式紅外氮氧化物分析儀
氣體成分在管道及設(shè)備中流動時發(fā)生的微觀變化是復(fù)雜的、多變的。在常量氣體成分分析時可以忽略的諸多影響因素,在微量氣體成分分析時不僅不能忽略,反而必須認真對待,此時,這些因素已經(jīng)成為影響微量氣體成分分析正確結(jié)果的主要矛盾,必須逐一排除和解決才能使微量氣體分析儀器工作順利完成。這些影響因素主要包括以下幾個方面:①取樣管路內(nèi)氣體多次的反復(fù)混合;②管壁與氣體成分的物理化學(xué)作用;③管路材質(zhì);④管路連接方式;⑤管路潔凈程度。
儀器作為一種計量檢測工具,在正常運行情況下,給出的數(shù)據(jù)絕大多數(shù)都是相對量值,測定數(shù)據(jù)是否準確及準確的程度(精度),儀器本身是無法提供的,也是無法證實的。必須依靠外圍技術(shù)工作完成,這就是分析數(shù)據(jù)的驗證工作。