數(shù)顯型腦立體定位儀是我司根據(jù)國內(nèi)多位神經(jīng)科學(xué)研究領(lǐng)域?qū)<业慕ㄗh,并在國外多種同類產(chǎn)品的基礎(chǔ)上研發(fā)而成的,在原有標(biāo)準(zhǔn)型定位儀的三維操作臂上增加了位移傳感器和 LCD 數(shù)字顯示屏,使X、Y、Z 軸坐標(biāo)可在顯示屏上實(shí)時(shí)顯示,一鍵清零,用戶無需前后查看數(shù)據(jù),直接讀取 X、Y、Z軸移動(dòng)距離,大大簡化實(shí)驗(yàn)操作的同時(shí)提高數(shù)據(jù)精度。
腦立體定位儀又稱腦固定裝置(Stereotaxic Apparatus),它是利用動(dòng)物顱骨外面的標(biāo)志或其它參考點(diǎn)所規(guī)定的三度坐標(biāo)系統(tǒng),來確定皮層下某些神經(jīng)結(jié)構(gòu)的位置,是神經(jīng)解剖、神經(jīng)生理、神經(jīng)藥理和神經(jīng)外科等領(lǐng)域內(nèi)的重要研究設(shè)備,可用于對神經(jīng)結(jié)構(gòu)進(jìn)行定向的注射、刺激、破壞、引導(dǎo)電位等操作,可用于帕金森氏病、癲癇紅外腦內(nèi)腫瘤等動(dòng)物模型的建立,也可用于學(xué)習(xí)記憶,腦內(nèi)神經(jīng)干細(xì)胞移植,腦缺血等方面的研究。
功能特點(diǎn):
1)開放式的底盤結(jié)構(gòu):產(chǎn)品采取通用的U形底座開放式結(jié)構(gòu),方便進(jìn)行多角度的操作;也可自由配置單臂、雙臂、單臂數(shù)顯、雙臂數(shù)顯等用于同時(shí)刺激和記錄。
2)廣域精準(zhǔn)的調(diào)節(jié)性:可垂直方向180 度旋轉(zhuǎn)、水平方向360 度旋轉(zhuǎn)的操作臂為研究人員提供靈活、精確的定位;
3)讀數(shù)簡約性:X、Y、Z 三軸移動(dòng)距離于 LCD 顯示屏實(shí)時(shí)顯示,用戶無需前后查看數(shù)據(jù),直接讀取數(shù)值,可在任意位置點(diǎn)一鍵清零,根據(jù)腦圖譜直接定位,避免二次讀數(shù)及計(jì)算,大大簡化實(shí)驗(yàn)操作;
4)外接設(shè)備的多樣性:夾持器部件可外接各種規(guī)格的探針、電極固定夾持器,執(zhí)行單元,等,也可以根據(jù)用戶的不同實(shí)驗(yàn)要求提供定制的固定夾持器以滿足多種實(shí)驗(yàn)要求;
5)高精度性:進(jìn)口位移傳感器和顯示屏質(zhì)量穩(wěn)定可靠,讀數(shù)精度10um,遠(yuǎn)高于標(biāo)準(zhǔn)型定位儀;
抗干擾性:數(shù)字顯示屏采用直流電池供電,避免了交流電帶來的電子噪聲干擾,適用于電生理實(shí)驗(yàn);
“歸零”功能
可以使用戶快速的在實(shí)驗(yàn)動(dòng)物顱骨上設(shè)定一個(gè)參考點(diǎn)。因此可節(jié)省了用戶的寶貴時(shí)間并提高了精確度。歸零功能的設(shè)置很簡單,在每個(gè)軸的任何位置都可以設(shè)置為“零”,這樣使實(shí)驗(yàn)變得簡單和直接。1。需找參考點(diǎn)“Bregma”。2.將所有的坐標(biāo)值設(shè)為“零”。3.移動(dòng)操縱臂到目標(biāo)位置點(diǎn)。
存儲功能
目標(biāo)的坐標(biāo)值可以被保存到51900和51903等數(shù)字腦立體定位儀的顯示盒中。
標(biāo)準(zhǔn)配置包括的組件
51900(單臂)和51903(雙臂)數(shù)字腦立體定位系統(tǒng)帶有一個(gè)探針固定器(51631),大鼠類適配器(51621)(包含鼻夾和18°耳棒)。
SA-150型數(shù)顯小鼠腦定位儀
SA-150型數(shù)顯大鼠腦定位儀
SA-151型數(shù)顯型雙臂腦定位儀
應(yīng)用領(lǐng)域:
腦立體定位儀是神經(jīng)解剖、神經(jīng)生理、神經(jīng)藥理和神經(jīng)外科等領(lǐng)域內(nèi)的重要研究設(shè)備,可用于對神經(jīng)結(jié)構(gòu)進(jìn)行定向的注射、刺激、破壞、引導(dǎo)電位等操作,可用于帕金森氏病、癲癇紅外腦內(nèi)腫瘤等動(dòng)物模型的建立,也可用于學(xué)習(xí)記憶,腦內(nèi)神經(jīng)干細(xì)胞移植,腦缺血等方面的研究。
相關(guān)配件及可選配件:
|
|
大鼠門牙固定適配器 | 小鼠固定適配器 |
|
|
電極夾持器 | 電極、螺帽、注射器夾持器 |
|
|
電極、注射器夾持器 | 微量注射器 |
|
|
|
|
型號規(guī)格:
型號 描述 SA-150-1 小鼠數(shù)顯型,單臂 SA-150-2 大鼠數(shù)顯型,單臂 SA-150-3 大小鼠數(shù)顯型,單臂 SA-151-1 小鼠數(shù)顯型,雙臂 SA-151-2 大鼠數(shù)顯型,雙臂 SA-151-3 大小鼠數(shù)顯型,雙臂
部分參考文獻(xiàn):
1. Albéri, L., Lintas, A., Kretz, R., Schwaller, B., & Villa, A. E. (2013). The calcium-binding protein parvalbumin modulates the firing 1 properties of the reticular thalamic nucleus bursting neurons. Journal of neurophysiology, 109(11), 2827-2841.
2. Sonati, T., Reimann, R. R., Falsig, J., Baral, P. K., O’Connor, T., Hornemann, S., Aguzzi, A. (2013). The toxicity of antiprion antibodies is mediated by the flexible tail of the prion protein. Nature, 501(7465), 102-106.
3. Ali, I., O’Brien, P., Kumar, G., Zheng, T., Jones, N. C., Pinault, D., O’Brien, T. J. (2013). Enduring Effects of Early Life Stress on Firing Patterns of Hippocampal and Thalamocortical Neurons in Rats: Implications for Limbic Epilepsy. PLOS ONE, 8(6), e66962.
4. Bell, L. A., Bell, K. A., & McQuiston, A. R. (2013). Synaptic Muscarinic Response Types in Hippocampal CA1 Interneurons Depend on Different Levels of Presynaptic Activity and Different Muscarinic Receptor Subtypes. Neuropharmacology.
5. Bolzoni, F., B?czyk, M., & Jankowska, E. (2013). Subcortical effects of transcranial direct current stimulation (tDCS) in the rat. The Journal of Physiology.
6. Bolzoni, F., B?czyk, M., & Jankowska, E. (2013). Subcortical effects of transcranial direct current stimulation (tDCS) in the rat. The Journal of Physiology.
7. Babaei, P., Tehrani, B. S., & Alizadeh, A. (2013). Effect of BDNF and adipose derived stem cells transplantation on cognitive deficit in Alzheimer model of rats. Journal of Behavioral and Brain Science, 3, 156-161.
8. Gilmartin, M. R., Miyawaki, H., Helmstetter, F. J., & Diba, K. (2013). Prefrontal Activity Links Nonoverlapping Events in Memory. The Journal of Neuroscience, 33(26), 10910-10914.
9. Feng, L., Sametsky, E. A., Gusev, A. G., & Uteshev, V. V. (2012). Responsiveness to nicotine of neurons of the caudal nucleus of the solitary tract correlates with the neuronal projection target. Journal of Neurophysiology, 108(7), 1884-1894.
10. Clarner, T., Diederichs, F., Berger, K., Denecke, B., Gan, L., Van der Valk, P., Kipp, M. (2012). Myelin debris regulates inflammatory responses in an experimental demyelination animal model and multiple sclerosis lesions. Glia, 60(10), 1468-1480.
11. Girardet, C., Bonnet, M. S., Jdir, R., Sadoud, M., Thirion, S., Tardivel, C., Troadec, J. D. (2011). Central inflammation and sickness-like behavior induced by the food contaminant deoxynivalenol: A PGE2-independent mechanism.Toxicological Sciences, 124(1), 179-191.
12. Hru?ka-Plocháň, M., Juhas, S., Juhasova, J., Galik, J., Miyanohara, A., Marsala, M., Motlik, J. (2010). A27 Expression of the human mutant huntingtin in minipig striatum induced formation of EM48+ inclusions in the neuronal nuclei, cytoplasm and processes. Journal of Neurology, Neurosurgery & Psychiatry, 81(Suppl 1), A9-A9.
13. Brooks, S., Jones, L., & Dunnett, S. B. (2010). A29 Frontostriatal pathology in the (C57BL/6J) YAC128 mouse uncovered by the operant delayed alternation task. Journal of Neurology, Neurosurgery & Psychiatry, 81(Suppl 1), A9-A10.
14. Yu, L., Metzger, S., Clemens, L. E., Ehrismann, J., Ott, T., Gu, X., Nguyen, H. P. (2010). A28 Accumulation and aggregation of human mutant huntingtin and neuron atrophy in BAC-HD transgenic rat. Journal of Neurology, Neurosurgery & Psychiatry, 81(Suppl 1), A9-A9.
15. Baxa, M., Juhas, S., Pavlok, A., Vodicka, P., Juhasova, J., Hru?ka-Plocháň, M., Motlik, J. (2010). A26 Transgenic miniature pig as an animal model for Huntington’s disease. Journal of Neurology, Neurosurgery & Psychiatry, 81(Suppl 1), A8-A9.
:,
:
yuyanbio
:yuyanbio