輕便型腦立體定位儀是我司根據(jù)國內(nèi)多位神經(jīng)科學(xué)研究領(lǐng)域?qū)<业慕ㄗh,并在國外多種同類產(chǎn)品的基礎(chǔ)上研發(fā)而成的。消除底板上的“U”型底座,適配器可在底板上前后左右移動,手術(shù)的操作空間更大。產(chǎn)品構(gòu)造穩(wěn)定、簡單和可靠,深受用戶好評。
腦立體定位儀又稱腦固定裝置(Stereotaxic Apparatus),它是利用動物顱骨外面的標(biāo)志或其它參考點(diǎn)所規(guī)定的三度坐標(biāo)系統(tǒng),來確定皮層下某些神經(jīng)結(jié)構(gòu)的位置,是神經(jīng)解剖、神經(jīng)生理、神經(jīng)藥理和神經(jīng)外科等領(lǐng)域內(nèi)的重要研究設(shè)備,可用于對神經(jīng)結(jié)構(gòu)進(jìn)行定向的注射、刺激、破壞、引導(dǎo)電位等操作,可用于帕金森氏病、癲癇紅外腦內(nèi)腫瘤等動物模型的建立,也可用于學(xué)習(xí)記憶,腦內(nèi)神經(jīng)干細(xì)胞移植,腦缺血等方面的研究。
產(chǎn)品特點(diǎn):
1)開放式的底板結(jié)構(gòu):利用燕尾塊組件前后左右移動代替?zhèn)鹘y(tǒng)的“U”形底座,提供了一個(gè)寬敞、開闊的操作空間,是一款體積較小、經(jīng)濟(jì)的定位設(shè)備;
2)可根據(jù)需要自由配置單臂、雙臂、單臂數(shù)顯、雙臂數(shù)顯等用于同時(shí)刺激和記錄;
3)可選用不同的適配器(大鼠適配器或小鼠適配器),滿足不同動物種類的實(shí)驗(yàn);
4)廣域精準(zhǔn)的調(diào)節(jié)性:十字操作臂垂直方向180度調(diào)節(jié),水平方向360度旋轉(zhuǎn),可為研究人員提供靈活、精準(zhǔn)的定位;
5)外接設(shè)備的多樣性:夾持器部件可外接各種規(guī)格的探針、電極固定夾持器,執(zhí)行單元,等,也可以根據(jù)用戶的不同實(shí)驗(yàn)要求提供定制的固定夾持器以滿足多種實(shí)驗(yàn)要求;
6)操作的便捷性:各個(gè)部件組裝簡便,特殊工藝處理的刻度部件,增強(qiáng)定位讀數(shù)的準(zhǔn)確性,恰當(dāng)?shù)膭游锕潭ú考焖俟潭▌游铮?
應(yīng)用領(lǐng)域:
腦立體定位儀是神經(jīng)解剖、神經(jīng)生理、神經(jīng)藥理和神經(jīng)外科等領(lǐng)域內(nèi)的重要研究設(shè)備,可用于對神經(jīng)結(jié)構(gòu)進(jìn)行定向的注射、刺激、破壞、引導(dǎo)電位等操作,可用于帕金森氏病、癲癇紅外腦內(nèi)腫瘤等動物模型的建立,也可用于學(xué)習(xí)記憶,腦內(nèi)神經(jīng)干細(xì)胞移植,腦缺血等方面的研究。
規(guī)格型號:
型號 | 描述 |
SA-103-1 | 小鼠,標(biāo)準(zhǔn),單臂,輕便型 |
SA-103-2 | 大鼠,標(biāo)準(zhǔn),單臂,輕便型 |
SA-103-3 | 大鼠+小鼠,標(biāo)準(zhǔn),單臂,輕便型 |
SA-160-1 | 小鼠,數(shù)顯,單臂,輕便型 |
SA-160-2 | 大鼠,數(shù)顯,單臂,輕便型 |
SA-160-3 | 大鼠+小鼠,數(shù)顯,單臂,輕便型 |
參考文獻(xiàn):
1. Jiang C, Wu X, Wang J, Li C, Luo G. Activation of CB1 pathway in the perirhinal cortex is necessary but not sufficient for destabilization of contextual fear memory in rats. Behavioural Brain Research. 2022;416:113573.
2.Liu Z, Li H, Hong C, et al. ALS-associated E478G mutation in human OPTN (Optineurin) promotes inflammation and induces neuronal cell death. Frontiers in immunology. 2018;9:2647.
3.Zhang Z, Chen W, Luan J, Chen D, Liu L, Feng X. Ameliorative effects of olibanum essential oil on learning and memory in Aβ1-42-induced Alzheimer’s disease mouse model. Tropical Journal of Pharmaceutical Research. 2020;19(8):1643-1651.
4.Wu M, Gao R, Dang B, Chen G. The blood component iron causes neuronal apoptosis following intracerebral hemorrhage via the PERK pathway. Frontiers in Neurology. 2020;11:588548.
5.Wang Y, Zhang H, Hua L, et al. Curcumin prevents Alzheimer’s disease progression by upregulating JMJD3. American Journal of Translational Research. 2022;14(8):5280.
6.Shi M, Gong Y, Wu M, et al. Downregulation of TREM2/NF-кB signaling may damage the blood-brain barrier and aggravate neuronal apoptosis in experimental rats with surgically injured brain. Brain Research Bulletin. 2022/06/01/ 2022;183:116-126.
7.Zhang B-J, Yuan C-X. Effects of ADAM2 silencing on isoflurane-induced cognitive dysfunction via the P13K/Akt signaling pathway in immature rats. Biomedicine & Pharmacotherapy. 2019/01/01/ 2019;109:217-225.
8.Chen ML, Hong CG, Yue T, et al. Inhibition of miR-331-3p and miR-9-5p ameliorates Alzheimer's disease by enhancing autophagy. Theranostics. 2021;11(5):2395-2409.
9.Gong Y, Wu M, Shen J, et al. Inhibition of the NKCC1/NF-κB signaling pathway decreases inflammation and improves brain edema and nerve cell apoptosis in an SBI rat model. Frontiers in Molecular Neuroscience. 2021;14:641993.
10. Zhang D, Pan N, Jiang C, Hao M. LncRNA SNHG8 sponges miR-449c-5p and regulates the SIRT1/FoxO1 pathway to affect microglia activation and blood-brain barrier permeability in ischemic stroke. Journal of Leukocyte Biology. 2022/05/01 2022;111(5):953-966.
:,
:
yuyanbio
:yuyanbio